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AMERICAN SCIENTIST, 52, 1964

THE COMPUTER VERSUS KEPLER*
BY OWEN GINGERICH

E OFTEN hear, in discussions of modern high-speed computers, how
Wan electronic machine can calculate more in a day than a man can
calculate in a lifetime by older methods. It occurred to me that a con-
crete demonstration of some properly chosen specific case would not only
be intrinsically interesting, but might shed some light on the historical
situation in question, and might also provide a dramatic example of the
application of computers in the history of science.

An especially appropriate example is found in the work of Kepler on
the orbit of Mars, since he gives some indication of the computational
time involved. In 4 stronomia Nova, Kepler describes in detail his attempt
to fit a circular orbit to a series of observations of Mars at opposition.
Since he wished to investigate a somewhat more general orbit than had
been adopted classically, he was led to a thorny trigonometric problem
that can be solved only iteratively.

Concerning this involved procedure, Kepler implores his reader:
““If you are wearied by this tedious method, take pity on me, who carried
out at least seventy trials of it, with the loss of much time, and don’t be
surprised that this already is the fifth year since I have attacked Mars,
although the year 1603 was almost entirely spent on optical investiga-
tions.”’! 1.

The implication that this problem required four years must be taken
with a grain of salt, but we do get a rough idea of the time involved.

It is this tedious, time-consuming procedure that I have programmed
for the IBM-7094 at the Harvard Computing Center. Before describing
my quite unexpected results, let me outline Kepler’s problem in some-
what greater detail.

When Kepler started his investigation on the motion of Mars, in 1601,
he was already a convinced Copernican, and therefore he assumed a
heliostatic orbit. Nevertheless, at the beginning, he accepted the
classical idea of using circles to represent the motion, and not until two
years later did he work out the elliptical form of the orbit. The ‘‘vicarious
orbit”’ that caused Kepler so much anguish and loss of time was a circle,
and in the end was completely abandoned.

Kepler had in hand a dozen observations of Mars at opposition—

* Presented to the History of Science Society, Philadelphia, December 29, 1963.

! To this, the French astronomer Delambre replied: “Kepler was sustained by his
desire to have a case against Tycho, Copernicus, Ptolemy, and all the astronomers in
the world; he has tasted this satisfaction, and I don’t believe he deserves our pity for
making all these calculations (1.
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THE COMPUTER VERSUS KEPLER 219

ten from Tycho Brahe and, later, two of his own (3. When Mars is at
opposition, the sun, earth, and Mars lie in a straight line, so the helio-
centric longitude of Mars is immediately known. I'igure 1, reproduced
from Declambre’s Histoire de I’ Asironomie M oderne, shows us the basic
diagram for this problem. In the diagram, the sun is at A, and four
observations of Mars, carcfully chosen for a reasonably uniform distri-
bution, are laid out from it. Note that the carth does not enter into this
discussion. Now the correct elliptical orbit of Mars does not differ very

]TIL}]. 49 .

Fic. 1

much from a circle, except that the sun is at one focus and reasonably
far displaced from the center. In this circular approximation, the sun
lies off the center of the circle, which is at B.

We know that Mars moves most quickly when nearest the sun and
slowest when at aphelion (that is, when farthest from the sun), a fact
later expressed in the law of areas. Kepler believed this must be so from
physical reasons, and therefore, he was already convinced that the
seat of uniform angular motion in the orbit, must lie on the line
through A and B, that is, on the line of apsides. In the analogous case,
Ptolemy had placed this seat of uniform angular motion, or equant,
equally spaced opposite A from the center of the circle. We now know
that such a configuration produces the best possible approximation to
an ellipse, and when we have the equant at the empty focus of the ellipse,
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220 AMERICAN SCIENTIST

the resulting errors in fitting the observed longitudes reach a maximum
of 8’ of arc. This is the figure later found by Kepler, which, for him,
proved to be such a large discrepancy from Tycho’s observations that he
felt obliged to abandon the circular orbits.

Kepler, however, wished to keep the spacing of A and C along the line
of apsides as an unknown quantity to be determined. Also, he knew the
direction of the aphelion fairly well, but he wished to improveits position.
Kepler was therefore obliged to use four observations to determine all
these quantities. Nowadays, we would try to use all twelve observations,
combining them into a least-squares solution. This technique was, of
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Fia. 2. The comparison of the Robert Small commentary with a portion of the
FORTRAN program shows how closely the notations agree.

course, unavailable to Kepler. Note that the angles from A are all de-
termined by observation. The angles from C are known relative to one
another, because the motion about this point is uniform in time and the
times of observations are known. The zero point of this system is to be
determined, and also the direction of the aphelion AH.

Kepler starts by assuming these two quantities and solves trig-
onometrically the various angles of this inscribed quadrilateral. The
result tells him whether or not the points lie on a circle. In the first in-
stance they do not, so the direction AH is altered and the solution made
again. A comparison of the results of these trials suggests a better po-
sition for AH, and the calculation is again repeated. This process I shall
call the inner iteration. When it has finally converged, Kepler solves this
triangle EGB to find if the center of circle B lies on the line CA between
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THE COMPUTER VERSUS KEPLER 221

the sun and the equant. Again in this first instance it does not. This time,
the zero point of the mean angles at C is altered, and the inner iteration is
repeated. Eventually, the outer iteration also succeeds, and the points
A, B, and C are found to lie on a straight line. I am sure Kepler is count-
ing the inner iterations when he tells us that seventy trials were re-
quired.

The programming followed Kepler’s procedure almost exactly. I was
greatly helped by a book by Robert Small (4], which was recently re-
printed through the efforts of William Stahlman. Figure 2 shows how
closely the FORTRAN programming followed his notation. The princi-
pal difference in my approach is that when Kepler got close to the solu-
tion, he jumped to the answer using small corrections made by propor-
tional parts, whereas I found it easier simply to repeat the entire calcu-
lation. Also, the program used accuracy criteria somewhat more rigid
than Kepler’s.

KEPLER?S VIOARIOUS ORBIT, OR, *THE COMPUTER VERSUS KEPLER® 12/18/63 PAGE 6
709/7090 FORTRAN DIAGNOSTIC PROGRAM RESULTS

SUNLCATANF(TAN2(4)-ATANFITAN2(1})

03111 ¥00 NANY LEFT PARENTHESIS.

SUM2= ATANF(TAN2(3)-ATANF(TAN2(2))

03112 TEO MANY LEFT PARENTHESIS.

102 FORMAT (1BH4OUTER ITERATION =13,24X4HADM=3X,3F4.0,F5.1,8X,23HF INAL COMPARISON ANGLESY14X,4HEBG=3X,3F4.0,F5.
BXs4HEABI3Xy 3F4.07F5.1p BXy4HBAE=53Xy3F4.0,F5.1/16X,4HAEG=3X13F4.04F5.1,8Xy4HBEG=3X,3F4.0,F5.1,8X, 4HHAE=3X,
F4.00F521/E5Xy IHEG=3X,F11.8,3HBE=3X,F11.8/ 15Xy 3HBA=3X,F11.8y 14X, 3HCA=3X,F11.8)

04032 FORMAT STATEMENT 1S INCORRECTLY WRITTEN.
END OF DIAGNOSTIC PROGRAM RESULTS.

SOURCE PROGRAK ERRORS NO COMPILATLON.
ENECWIICN BELETED.

F1e. 3. FORTRAN diagnostic. A decimal has been mispunched in place of a comma
in the format statement.

After I had set up and ‘“debugged’ this program, I found that the
machine could polish off the entire problem in a little less than eight
seconds! This is not too surprising when we realize that only about
twenty five trigonometric functions are required in each trial. Unlike
Kepler, the computer does not need to look up and laboriously inter-
polate each of these. Instead, it computes them from scratch as needed,
at the rate of 3000 per second]

At least some readers will want to know how long it took me to set up
the program. When Kepler first arrived at Tycho’s establishment, he
made a bet that he would have the Mars orbit all cleaned up within
eight days. When I agreed to report on this project, I too hoped to finish
the calculations very quickly. But I procrastinated, and finally only
eight days remained before the Christmas meeting. Thus, circumstances
forced me to carry out these computations within that time span.
In all, T had nine tries on the computer for this work. In the first two, the
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ical flaws were

f runs in which other log

Y a series o

This was followed b
detected—for example, there turned out to be an error in the Robert

computer system detected errors of typography and nomenclature, so
those trials “went up in smoke,” as Kepler might say? (see Figure 3).

Small book, which I had blindly followed. By the sixth try, I already

had in hand one very interesting result, after a total of eight minutes of

computer time. In the ensuing runs, I corrected several more errors and

also computed with different initial conditions, as I shall explain. Al-

together, I used 12.4 minutes of IBM-7094 time. Now that the program
has been written and ‘“‘debugged,” additional cases require only the eight

seconds quoted above. Figure 4 illustrates an example of the output.

2 “Ttaque causae Physicae cap XLV in fumos abeunt.”’ [4a]
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THE COMPUTER VERSUS KEPLER 223

The results I have just quoted sound more like a publicity release for
electronic computers than a serious paper in the history of science.
However, one quite remarkable fact turned up in this investigation.
Instead of requiring seventy trials as Kepler did, the computer program,
using identical methods, took only nine trials! In fact, we might have
anticipated this result without doing any calculations at all, from the
following considerations. Suppose the aphelion and the zero point of the
mean longitudes are originally known to 1° (actually they were much

3' — e KEPLER'S CALCULATIONS
&) (: o COMPUTER,WITH KEPLER'S ERROR
g , . e COMPUTER, WITHOUT KEPLER'S ERROR
s 2
* ) g
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DATE OF OPPOSITION

Fic. 5

better known than this). Suppose we wish to get these to 30’/ of are,
that is, an improvement by a factor of 120. Since 27 is 128, 7 inner itera-
tions should be required in each of 7 outer iterations, if the error is
halved each time. This total number of iterations, about 50, should
probably be halved because the inner and outer iterations are not in-
dependent, and as the outer iteration converges, the inner set will re-
quire fewer than 7 tries each time. Furthermore, since the problem
turns out to be fairly linear, we can use proportional parts to speed the
convergence, and hence we might again halve the number of iterations,
making about 12. On the other hand, we make an initial try, then a try
with an arbitary displacement, and finally a try with proportional parts
based on the first results. Thus, three tries in each inner iteration, and
three outer iterations, give a minimum of nine trials by this method,
precisely the number used by the computer.

Why, then, did Kepler require seventy trials? Since Kepler already
started with an arbitrary correction to Tycho’s zero point on the mean
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224 AMERICAN SCIENTIST

longitudes, we suspect that he may have used many trials to reach the
starting point shown in Astronomia Nova. Therefore, the calculations
were repeated, starting directly from Tycho’s figures. Now, thirteen
iterations are required, still a very small number.

I can only conclude that Kepler was horribly plagued by numerical
errors, that his trials accidentally diverged nearly as often as they
converged. No wonder he was so frustrated in his attempt to solve this
problem, which was apparently just at the limit of his computational
ability! Do we have any evidence for this conclusion? Yes. At the very

L R
Fie. 6. Kepler’s original manuscripts, including the 900 pages of Mars calcula-
tions, are still preserved in Leningrad. “Deo et Publico’”” is the motto of Catherine

the Great, who purchased the volumes for the Russian Academy of Science in 1773.
Photograph courtesy Phillips Library, Harvard College Observatory. [10]

beginning of his calculation, Kepler makes numerical errors in three of
his eight starting angles—errors of the same order of magnitude as the
corrections he was seeking. These errors were noted both by Small and
by Delambre. I therefore programmed the computer to solve the
problem both with and without this initial error. The final solution ap-
pears comparatively insensitive to these errors, but it is curious to note
that Kepler gets about the same answer with the errors that the machine
computes without!

After Kepler completed his solution with four of the twelve opposi-
tions, he carefully calculated the predicted positions for all twelve ob-
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THE COMPUTER VERSUS KEPLER 225

servations 5;. The results, shown in Figure 5, exhibit several interesting
features.

First of all, since the solution was carried out exactly for the opposi-
tions of 1587, 1591, 1593, and 1595, the same observed positions ought to
be predicted by the theory. But here, Kepler has taken a very curious
step: he corrects each of the positions for the advance of nodes of
Mars—a curious step because the correction is made after the main
calculation instead of before 61! Thus, only the pivotal 1587 opposition
must predict exactly the observed position; yet, as the graph indicates,
Kepler has made a small computational error of 15”. Given a uniform
motion of the nodes, the 1591, 1593, and 1595 observations should show
increasing errors, yet again this is not the case. Compared to the machine
calculations, Kepler’s results for 1591 and 1593 show computational er-
rors as large as 1’. One final comment: note from the graph how Kepler’s
errors generally increase the deviations between observation and pre-
diction, excepi for the most discordant cases!

The best possible solution with this type of model, as stated pre-
viously, leaves errors up to 8’ of arc. We see here that Kepler was
incredibly lucky in his particular choice of observations—or perhaps we
should say unlucky, because, with larger errors, he would probably
have recognized the inadequacy of this construction earlier. As a test,
I chose other well-distributed sets of four oppositions as the basis of the
solution, and I indeed found larger errors, up to 8’ of arc.

I hope this study has shed some light on the difficulties encountered
by Kepler, and perhaps on his computational ability. My thesis, that
his calculations were incredibly loaded with numerical errors, has
already been observed in another section of Astronomia Nova by O.
Neugebauer (71. Perhaps it will someday be further confirmed by a full
analysis of the 900 pages of original manuscript computations, still
extant in Leningrad (s1. I do not wish, however, to detract in any way
from the magnitude of Kepler’s scientific achievement. Perhaps the most
appropriate conclusion would be a further quotation from Astronomia
Nova:

“There will be some clever geometers such as Vieta who will think it is
something great to demonstrate the inelegance of this method. (As a
matter of fact, Vieta has already made this charge against Ptolemy,
Copernicus, and Regiomontanus.) Well, let them go solve this scheme
themselves by geometry, and they will for me be a great Apollo. For me
it suffices to draw four or five conclusions from one argument (in which
there are included four observations and two hypotheses), and to have
shown by the light of geometry an inelegant thread for finding the way
out of the labyrinth. If this method is difficult to grasp, how much more
difficult it is to investigate things without any method” [9].
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