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 american scientist, 52, 1964

 THE COMPUTER VERSUS KEPLER*
 BY OWEN GINGERICH

 We often hear, in discussions of modern high-speed computers, how an electronic machine can calculate more in a day than a man can
 calculate in a lifetime by older methods. It occurred to me that a con
 crete demonstration of some properly chosen specific case would not only
 be intrinsically interesting, but might shed some light on the historical
 situation in question, and might also provide a dramatic example of the
 application of computers in the history of science.

 An especially appropriate example is found in the work of Kepler on
 the orbit of Mars, since he gives some indication of the computational
 time involved. In Astronomia Nova, Kepler describes in detail his attempt
 to fit a circular orbit to a series of observations of Mars at opposition.
 Since he wished to investigate a somewhat more general orbit than had
 been adopted classically, he was led to a thorny trigonometric problem
 that can be solved only iteratively.

 Concerning this involved procedure, Kepler implores his reader:
 "If you are wearied by this tedious method, take pity on me, who carried
 out at least seventy trials of it, with the loss of much time, and don't be
 surprised that this already is the fifth year since I have attacked Mars,
 although the year 1603 was almost entirely spent on optical investiga
 tions."1 fl].

 The implication that this problem required four years must be taken
 with a grain of salt, but we do get a rough idea of the time involved.

 It is this tedious, time-consuming procedure that I have programmed
 for the IBM-7094 at the Harvard Computing Center. Before describing

 my quite unexpected results, let me outline Kepler's problem in some
 what greater detail.

 When Kepler started his investigation on the motion of Mars, in 1601,
 he was already a convinced Copernican, and therefore he assumed a
 heliostatic orbit. Nevertheless, at the beginning, he accepted the
 classical idea of using circles to represent the motion, and not until two
 years later did he work out the elliptical form of the orbit. The "vicarious
 orbit" that caused Kepler so much anguish and loss of time was a circle,
 and in the end was completely abandoned.

 Kepler had in hand a dozen observations of Mars at opposition?

 * Presented to the History of Science Society, Philadelphia, December 29, 1963.
 1 To this, the French astronomer Delambre replied: "Kepler was sustained by his

 desire to have a case against Tycho, Copernicus, Ptolemy, and all the astronomers in
 the world; he has tasted this satisfaction, and I don't believe he deserves our pity for
 making all these calculations [2].
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 THE COMPUTER VERSUS KEPLER  219

 ten from Tycho Brahe and, later, two of his own [3|. When Mars is at
 opposition, the sun, earth, and Mars lie in a straight line, so the helio
 centric longitude of Mars is immediately known. Figure 1, reproduced
 from Dclambrc's Histoire de VAstronomie Moderne, shows us the basic
 diagram for this problem. In the diagram, the sun is at A, and four
 observations of Mars, carefully chosen for a reasonably uniform distri
 bution, are laid out from it. Note that the earth does not enter into this
 discussion. Now the correct elliptical orbit of Mars does not differ very

 Fig. 1

 much from a circle, except that the sun is at one focus and reasonably
 far displaced from the center. In this circular approximation, the sun
 lies off the center of the circle, which is at .
 We know that Mars moves most quickly when nearest the sun and

 slowest when at aphelion (that is, when farthest from the sun), a fact
 later expressed in the law of areas. Kepler believed this must be so from
 physical reasons, and therefore, he was already convinced that the
 seat of uniform angular motion in the orbit, must lie on the line
 through A and B, that is, on the line of apsides. In the analogous case,
 Ptolemy had placed this seat of uniform angular motion, or equant,
 equally spaced opposite A from the center of the circle. We now know
 that such a configuration produces the best possible approximation to
 an ellipse, and when we have the equant at the empty focus of the ellipse,
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 220  american scientist

 the resulting errors in fitting the observed longitudes reach a maximum
 of 8' of arc. This is the figure later found by Kepler, which, for him,
 proved to be such a large discrepancy from Tycho's observations that he
 felt obliged to abandon the circular orbits.
 Kepler, however, wished to keep the spacing of A and C along the line

 of apsides as an unknown quantity to be determined. Also, he knew the
 direction of the aphelion fairly well, but he wished to improve its position.
 Kepler was therefore obliged to use four observations to determine all
 these quantities. Nowadays, we would try to use all twelve observations,
 combining them into a least-squares solution. This technique was, of

 / AC + AE V ?

 and AEG = 19" 55'51"; as also EG = AC^iuEAG =
 52282.63271 AE?

 - = 970*1.

 3. Since the base EG of the isosceles triangle EBG, an
 the vertical angle EBG are thus found, the angle BEG at t?
 base is g.ven, and = 25= W 53" ; and, therefore, BE =
 EG. s.n. BEG _ 970H,?_ sin. EBG - 78327

 4. In the triangle BEA, the angle BEA is given, for ?t is
 = BEG ? AEG = 5? 51' 2', and also its { suppl. = 87*
 *- ?7". Therefore tan. i (BAE - ABE) = tan. i rapo).
 BEA fBE~AE, _ 1957200.3121 lbE + AE " ?W5V'J~
 17' 8"; so that BAE = 117? 21'37".

 the aphelioi

 - = 58*02 = tan. ?

 iced in longitude, let

 !b? 3'J' 23", CAE or HAE will be = 117? 52'5"; that
 iter by 30? 28" than BAE; and is not sitnated in
 Jt on side of it towards E. The suppositions there
 r FA and FCH, must, one of them, or perhap.

 angles ofanorr
 :he assumed lo
 ilion of it will

 i, ther
 rof tl

 longitu

 phelion ? because
 s D, F, F, G, to
 e circle ? ami be

 sition of the lines FC, FE, ire. must be varied. This,
 fore, was the next step of Kepler's procedure ? and he teilt

 ?, it was not till after a great variety of unsuccessful trials,
 that he found his purpose would be nearly accomplished by
 the addition of H more to the longitude of the aphelion, and
 of 30" at the same time to the mean longitudes. By these
 additions the mean anomalies FCH, ECH, &c. are all dimi
 nished 30" each ; and we have FCH = 32? y 36" ( KCE
 = 53? 7' 2"; KCD = 11? 0> *4"; and KCG = 68? 18' 1".
 The angles again of equation will become AFC = 5? 8' 26";
 A EC = 9? V 41"; ADC = 2? 17' 10"; and AGC = 10? IS'
 *5"; being increased 30" in the first semi circle of anomaly,
 and as much diminished io the second : consequently, the

 1CC0 CCNCINUE
 MCNT = MCNT+1
 URITE CUTUUT TAPE 6, 101, ICN ,N2CH ,ADOS,BCDATE,(CHS,N =

 WANCM,eAPP,E<jN,IAF(N),N = l,4), 2,SUM 1 S,SUM2S
 GC TC Kl,(220,230)

 C-ACC ARB ! TRARY INCREMENT IN FIRST ITERATION.
 20 ACC=RACF(0.,0.,5.,0.C1I

 ASSIGN 230 TC Kl
 225 SM1=SUM1

 SM2=SUM2
 SC=SUMC
 OCLOO
 Cr-=5?.t- + ACC
 GC TC 190

 C-acC PRCPORT ICUAL INCREMENTS IN REMAINING ITERATIONS.
 2 30 IF (ACr-P*r_FIC.,0.,O., 10.))235,235,2 3?.
 234 ALC*AUC/(SC-SUMD)?SUMC

 IFIN1CNT-2C) 2 5,300,300
 C
 C-BEG IN CUTfcR ITERATICN.

 235 E HG* ThGPl-FAF-FAEU) -SUM1-SUM2
 EAG*FAE(2)+FAH3)
 AEGAGb=2.?ATANF(TNHSUPF(EAG)?ABAHF(AF(4),AF(2)) )
 AEG*IPI*AFGAGF-EAG)/2.
 EG=AF(A)?SINF(EAG)/SINF(AEG)
 BEG=(PI-EPG)/2.
 BC = EG*SINHBEG)/SlNF(bBG)
 CA=l./PE
 BfcA=?BEG-AEC
 BAEABE=2.?ATANF{TNHSUPF(BEA)?ABABF(RE,AFI2)) )
 PAF?(Pf*BAEABE-BEA)/2.

 1,4), EA ,

 Fig. 2. The comparison of the Robert Small commentary with a portion of the
 FORTRAN program shows how closely the notations agree.

 course, unavailable to Kepler. Note that the angles from A are all de
 termined by observation. The angles from C are known relative to one
 another, because the motion about this point is uniform in time and the
 times of observations are known. The zero point of this system is to be
 determined, and also the direction of the aphelion AH.
 Kepler starts by assuming these two quantities and solves trig

 onometrically the various angles of this inscribed quadrilateral. The
 result tells him whether or not the points lie on a circle. In the first in
 stance they do not, so the direction AH is altered and the solution made
 again. A comparison of the results of these trials suggests a better po
 sition for AH, and the calculation is again repeated. This process I shall
 call the inner iteration. When it has finally converged, Kepler solves this
 triangle EGB to find if the center of circle lies on the line CA between

This content downloaded from 
�������������93.34.235.196 on Tue, 15 Sep 2020 13:16:27 UTC������������� 

All use subject to https://about.jstor.org/terms



 the computer versus kepler  221

 the sun and the equant. Again in this first instance it does not. This time,
 the zero point of the mean angles at C is altered, and the inner iteration is
 repeated. Eventually, the outer iteration also succeeds, and the points
 A, B, and C are found to lie on a straight line. I am sure Kepler is count
 ing the inner iterations when he tells us that seventy trials were re
 quired.

 The programming followed Kepler's procedure almost exactly. I was
 greatly helped by a book by Robert Small [4], which was recently re
 printed through the efforts of William Stahlman. Figure 2 shows how
 closely the FORTRAN programming followed his notation. The princi
 pal difference in my approach is that when Kepler got close to the solu
 tion, he jumped to the answer using small corrections made by propor
 tional parts, whereas I found it easier simply to repeat the entire calcu
 lation. Also, the program used accuracy criteria somewhat more rigid
 than Kepler's.

 ?PLfR?5 VICARIOUS ORBIT* OR, 'THE COMPUTER VERSUS KEPLER' 12/18/63 PAGE 6

 709/7090 FORTRAN DIAGNOSTIC PROGRAM RESULTS

 lUM**IANF(TAN2(<i|-ATANF(TAN2< 1) }

 0?I22 HOC HANY LEFT PARENTHESIS'.

 SUM2= ATANFITAH2I3)-ATANF(TAN2I2J)

 03112 TOC MANY LEFT PARENTHESIS.

 102 FOR (IATI18H4 OUTER ITERATION =?1 3 , 2<tX 4HADM=3X , 3F4. 0, F5 . 1 , 8X , 2 3HF I NAL COMPARISON ANGLEsV 14x ' *HEBG=3X, 3F4. 0, F 5. 1/
 8X.4HEAG^3X,3F4.0,F5.1. 8X, 4HBAE= . 3X . 3F A. 0 ,F5. 1 / 14X,4HAEG=3X ,3F4. 0 , F5 . 1, 8X, 4HBEG=3X , 3F4.0, F5. 1, 8X, 4HHAE = 3X,3
 F4.0wF5ll/l5X,3HEG*3X,F11.8,3HBE?3X,F11.8/ 15X,3HBA=3X,F11.?,14X,3HCA?3X,F 11.8)

 04092 FORMT STATEMENT IS INCORRECTLY WRITTEN.
 END OF DIAGNOSTIC PROGRAM RESULTS.

 I0URCE PROGRAM ERROR. NO COMPILATION.

 EXECWaiCN iEKETED.

 Fig. 3. FORTRAN diagnostic. A decimal has been mispunched in place of a comma
 in the format statement.

 After I had set up and "debugged" this program, I found that the
 machine could polish off the entire problem in a little less than eight
 seconds! This is not too surprising when we realize that only about
 twenty five trigonometric functions are required in each trial. Unlike
 Kepler, the computer does not need to look up and laboriously inter
 polate each of these. Instead, it computes them from scratch as needed,
 at the rate of 3000 per second !

 At least some readers will want to know how long it took me to set up
 the program. When Kepler first arrived at Tycho's establishment, he
 made a bet that he would have the Mars orbit all cleaned up within
 eight days. When I agreed to report on this project, I too hoped to finish
 the calculations very quickly. But I procrastinated, and finally only
 eight days remained before the Christmas meeting. Thus, circumstances
 forced me to carry out these computations within that time span.
 In all, I had nine tries on the computer for this work. In the first two, the
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 computer system detected errors of typography and nomenclature, so
 those trials "went up in smoke/' as Kepler might say2 (see Figure 3).

 This was followed by a series of runs in which other logical flaws were
 detected?for example, there turned out to be an error in the Robert
 Small book, which I had blindly followed. By the sixth try, I already
 had in hand one very interesting result, after a total of eight minutes of
 computer time. In the ensuing runs, I corrected several more errors and
 also computed with different initial conditions, as I shall explain. Al
 together, I used 12.4 minutes of IBM-7094 time. Now that the program
 has been written and "debugged," additional cases require only the eight
 seconds quoted above. Figure 4 illustrates an example of the output.

 2 "Itaque causae Physicae cap XLV in fumos abeunt." [4a]
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 THE COMPUTER VERS?S KEPLER

 The results I have just quoted sound more like a publicity release for
 electronic computers than a serious paper in the history of science.
 However, one quite remarkable fact turned up in this investigation.
 Instead of requiring seventy trials as Kepler did, the computer program,
 using identical methods, took only nine trials! In fact, we might have
 anticipated this result without doing any calculations at all, from the
 following considerations. Suppose the aphelion and the zero point of the

 mean longitudes are originally known to Io (actually they were much

 KEPLER S CALCULATIONS
 o COMPUTER,WITH KEPLER'S ERROR

 COMPUTER, WITHOUT KEPLER'S ERROR

 t 8

 I
 o  I I I cr> ? ro

 DATE OF OPPOSITION

 o
 o  o

 I
 o

 Fig. 5

 better known than this). Suppose we wish to get these to 30" of arc,
 that is, an improvement by a factor of 120. Since 27 is 128, 7 inner itera
 tions should be required in each of 7 outer iterations, if the error is
 halved each time. This total number of iterations, about 50, should
 probably be halved because the inner and outer iterations are not in
 dependent, and as the outer iteration converges, the inner set will re
 quire fewer than 7 tries each time. Furthermore, since the problem
 turns out to be fairly linear, we can use proportional parts to speed the
 convergence, and hence we might again halve the number of iterations,
 making about 12. On the other hand, we make an initial try, then a try
 with an arbitary displacement, and finally a try with proportional parts
 based on the first results. Thus, three tries in each inner iteration, and
 three outer iterations, give a minimum of nine trials by this method,
 precisely the number used by the computer.
 Why, then, did Kepler require seventy trials? Since Kepler already
 started with an arbitrary correction to Tycho's zero point on the mean
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 224  american scientist

 longitudes, we suspect that he may have used many trials to reach the
 starting point shown in Astronomia Nova. Therefore, the calculations
 were repeated, starting directly from Tycho's figures. Now, thirteen
 iterations are required, still a very small number.

 I can only conclude that Kepler was horribly plagued by numerical
 errors, that his trials accidentally diverged nearly as often as they
 converged. No wonder he was so frustrated in his attempt to solve this
 problem, which was apparently just at the limit of his computational
 ability! Do we have any evidence for this conclusion? Yes. At the very

 Fig. 6. Kepler's original manuscripts, including the 900 pages of Mars calcula
 tions, are still preserved in Leningrad. "Deo et Publico" is the motto of Catherine
 the Great, who purchased the volumes for the Russian Academy of Science in 1773.
 Photograph courtesy Phillips Library, Harvard College Observatory. [10]

 beginning of his calculation, Kepler makes numerical errors in three of
 his eight starting angles?errors of the same order of magnitude as the
 corrections he was seeking. These errors were noted both by Small and
 by Delambre. I therefore programmed the computer to solve the
 problem both with and without this initial error. The final solution ap
 pears comparatively insensitive to these errors, but it is curious to note
 that Kepler gets about the same answer with the errors that the machine
 computes without!
 After Kepler completed his solution with four of the twelve opposi

 tions, he carefully calculated the predicted positions for all twelve ob
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 THE COMPUTER VERSUS KEPLER  225

 servations isj. The results, shown in Figure 5, exhibit several interesting
 features.

 First of all, since the solution was carried out exactly for the opposi
 tions of 1587, 1591, 1593, and 1595, the same observed positions ought to
 be predicted by the theory. But here, Kepler has taken a very curious
 step: he corrects each of the positions for the advance of nodes of

 Mars?a curious step because the correction is made after the main
 calculation instead of before [6]! Thus, only the pivotal 1587 opposition
 must predict exactly the observed position; yet, as the graph indicates,
 Kepler has made a small computational error of 15". Given a uniform
 motion of the nodes, the 1591, 1593, and 1595 observations should show
 increasing errors, yet again this is not the case. Compared to the machine
 calculations, Kepler's results for 1591 and 1593 show computational er
 rors as large as 1 '. One final comment : note from the graph how Kepler's
 errors generally increase the deviations between observation and pre
 diction, except for the most discordant cases !

 The best possible solution with this type of model, as stated pre
 viously, leaves errors up to 8' of arc. We see here that Kepler was
 incredibly lucky in his particular choice of observations?or perhaps we
 should say unlucky, because, with larger errors, he would probably
 have recognized the inadequacy of this construction earlier. As a test,
 I chose other well-distributed sets of four oppositions as the basis of the
 solution, and I indeed found larger errors, up to 8' of arc.

 I hope this study has shed some light on the difficulties encountered
 by Kepler, and perhaps on his computational ability. My thesis, that
 his calculations were incredibly loaded with numerical errors, has
 already been observed in another section of Astronomia Nova by 0.
 Neugebauer [7]. Perhaps it will someday be further confirmed by a full
 analysis of the 900 pages of original manuscript computations, still
 extant in Leningrad [8]. I do not wish, however, to detract in any way
 from the magnitude of Kepler's scientific achievement. Perhaps the most
 appropriate conclusion would be a further quotation from Astronomia
 Nova:

 ' There will be some clever geometers such as Vieta who will think it is
 something great to demonstrate the inelegance of this method. (As a
 matter of fact, Vieta has already made this charge against Ptolemy,
 Copernicus, and Regiomontanus.) Well, let them go solve this scheme
 themselves by geometry, and they will for me be a great Apollo. For me
 it suffices to draw four or five conclusions from one argument (in which
 there are included four observations and two hypotheses), and to have
 shown by the light of geometry an inelegant thread for finding the way
 out of the labyrinth. If this method is difficult to grasp, how much more
 difficult it is to investigate things without any method" [9].
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